MOLECULAR CLONING AND CHARACTERIZATION OF TERPENE SYNTHASE 4 (SgTPS4) GENE FROM Salvia guaranitica PLANT

Authors

  • ESRAA A. ELSHERBENY Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El- Matariya B.O.P 11753 El-matariya, Cairo
  • MOHAMMED ALI Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El- Matariya B.O.P 11753 El-matariya, Cairo https://orcid.org/0000-0001-9232-1781
  • F. A. EL-RAMAH Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El- Matariya B.O.P 11753 El-matariya, Cairo
  • MANAL K. AHMED Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El- Matariya B.O.P 11753 El-matariya, Cairo

Abstract

Salvia guaranitica is a medicinal and aromatic plant with highly valued in traditional medicine for its abundance of terpenes, especially the monoterpenes (C10) and sesquiterpenes (C15). Various terpenes were believed to contribute to the many useful biological properties in plants. This study aimed at cloning and functionally characterizes a full length sesquiterpene synthase gene from S. guaranitica. Terpene synthase 4 (SgTPS4) has a complete open reading frame (ORF) of 2289 base pairs encoding a 763 amino acids protein. The phylogenetic tree demonstrates that SgTPS4 protein was clustered into the subfamily TPS-c, which belongs to the angiosperm terpenoid synthase. To examine the function of SgTPS4, we expressed this gene in N. tabacum. Two transgenic lines, designated as OE- SgTPS4 -1 and OE- SgTPS4 -2 were further characterized, both molecularly and functionally. The wild type plants showed a little delayed growth compared to the transgenic plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that SgTPS4 was responsible for the production of Bicyclogermacrene. This is the first report of a gene involved in the Bicyclogermacrene as a sesquiterpene from S. guaranitica plant. Ethics approval and consent to participate No investigations were undertaken using humans/human samples in this study. No experimental animals were used to conduct any of the experiments reported in this manuscript. Our study did not involve endangered or protected species.

Author Biography

MOHAMMED ALI, Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El- Matariya B.O.P 11753 El-matariya, Cairo

References

Ali M., Hussain R. M., Rehman N. U., She G., Li P., Wan X., Guo L. and Zhao J. (2018). De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in blue anise sage (Salvia guaranitica L.). DNA Res., 25(6): 597-617. doi.org/10.1093/dnares/dsy028

Ali M., Li P., She G., Chen D., Wan X. and Zhao J. (2017). Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Sci. Rep., 7(1): 16074. doi.org/10.1038/s41598-017-15478-3

Alziar G. (1988-1993). Catalogue synonymique des Salvia L. dumonde (Lamiaceae). I.–VI. Biocosme Mesoge´en., 5 (3–4): 87-136; 6 (1–2, 4): 79–115, 163-204; 7 (1–2): 59-109; 9 (2–3): 413-497; 10 (3–4): 33-117.

Aminfar Z., Rabiei B., Tohidfar M. and Mirjalili M. H. (2019). Identification of key genes involved in the biosynthesis of triterpenic acids in the mint family. Sci. Rep., 9 (1): 15826. doi.org/10.1038/s41598-019-52090-z

Aubourg S., Lecharny A., Bohlmann J. (2002). Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol. Genet. Genom., 267: 730-745. doi: 10.1007/s00438-002-0709-y

Bohlmann J., Meyer-Gauen G. and Croteau R. (1998). Plant terpenoid synthases: molecular biology and phylogenetic analysis,” Proc. Natl. Acad. Sci., USA., 95, 8: 4126-4133.

Chen F., Tholl D., Bohlmann J. and Pichersky E. (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J., 66 (1): 212-229. doi: 10.1111/j.1365-313X.2011.04520.x.

Christianson D. W. (2006). Structural biology and chemistry of the terpenoid cyclase’s, Chem Rev., 106 (8): 3412-3442.

Danner H., Boeckler G. A., Irmisch S., Yuan J. S., Chen F., Gershenzon J., Unsicker S. B. and Köllner T. G. (2011). Four terpene synthases produce major compounds of the Gypsy moth feeding induced volatile blend of Populus trichocarpa. Phytochemistry, 72 (9): 897-908.

Degenhardt J., Köllner T. G. and Gershenzon J. (2009). Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70: 1621-1637. https://doi.org/10.1016/j.phyto.Chem.2009.07.030

Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V., Lescot M., Claverie J. M. and Gascuel O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36: W465-W469. doi.org/10.1093/nar/gkn180

Falara V., Akhtar T. A., Nguyen T. T. H., Spyropoulou E. A., Bleeker P. M., Schauvinhold I., Matsuba Y., Bonini M. E., Schilmiller A. L., Last R. L., Schuurink, R. C., and Pichersky E. (2011).The tomato terpene synthase gene family. Plant Physiol. 157: 770–789. doi: 10.1104/pp.111.179648

Tholl D., Boland W., Hansel A., Loreto F., Röse U. S. and J. P. Schnitzler (2006). Practical approaches to plant volatile analysis. Plant J. 45: 540-560.

Gershenzon J. and W. Kreish (1999). Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In: Wink M., editor. Biochemistry of plant secondary metabolism. Florida: CRC Press, 222-299.

Gutensohn M., Orlova I., Nguyen T. T., Davidovich-Rikanati R., Ferruzzi M. G., Sitrit Y., Lewinsohn E., Pichersky E. and N. Dudareva (2013). Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J., 75 (3): 351-363.

Keilwagen J., Lehnert H., Berner T., Budahn H., Nothnagel T., Ulrich D., Dunemann F. (2017). The terpene synthase gene family of carrot (Daucus carota L.): Identification of QTLs and candidate genes associated with terpenoid volatile compounds. Front. Plant Sci. 8: 1930. doi: 10.3389/fpls.2017.01930

Köllner T. G., Held M., Lenk C., Hiltpold I., Turlings T. C., Gershenzon J. and Degenhardt J. (2008). A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell, 20(2): 482-94. doi: 10.1105/tpc.107.051672. Epub, Feb 22. PMID: 18296628; PMCID: PMC2276456.

Korankye A. E., Lada R., Asiedu S. and Claude C. (2017). Plant senescence: the role of volatile terpenecompounds (VTCs). Am. J. Plant Sci., 8: 3120-3139.

Külheim C., Padovan A., Hefer C., Krause S. T., Köllner T. G., Myburg A. A., Degenhardt J. and W. J. Foley (2015). The Eucalyptus terpene synthase gene family. BMC genomics, 16 (1): 450. doi.org/10.1186/s12864-015-1598-x

Li G., Köllner T. G., Yin Y., Jiang Y., Chen H., Xu Y., Gershenzon J., Pichersky E., Chen F. (2012). Nonseed plant Selaginella moellendorffii has both seed plant and microbial types of terpene synthases. Proc. Natl. Acad. Sci. USA. 2012;109: 14711-14715. Doi: 10.1073/pnas.1204300109

Martin D. M., Aubourg S., Schouwey M. B., Daviet L., Schalk M., Toub O., Lund S. T., Bohlmann J. (2010). Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 2010;10: 226. doi: 10.1186/1471-2229-10-226

Nieuwenhuizen N. J., Green S. A., Chen X., Bailleul E. J. D., Matich A. J., Wang M. Y., Atkinson R. G. (2013). Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiol. 161: 787-804. doi: 10.1104/pp.112.208249

Luck K., Chen X., Norris A. M., Chen F., Gershenzon J. and Köllner T. G. (2020). The reconstruction and biochemical characterization of ancestral genes furnish insights into the evolution of terpene synthase function in the Poaceae. Plant. Mol. Biol. 104, 1-2: 203-215. doi: 10.1007/s11103-020-01037-4

Pott D. M., Osorio S., and Vallarino J. G. (2019). From central to specialized metabolism: an overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Front. Plant Sci. 10: 835. doi: 10.3389/fpls.2019.00835

Ro D., Ehlting J., Keeling C., Lin R., Mattheus N. and J. Bohlmann (2006). Microarray expression profiling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-Y- bisabolene synthases. Arch. Biochem. Biophys., 448, 1-2: 104-116. : doi.org/10.1016/j.abb.2005.09.019

Ruzicka L. (1953). The isoprene rule and the biogenesis of terpenic compounds. Experientia, 9: 357-367.

Ruzicka L. (1959). Faraday Lecture (History of the isoprene rule), Proc. Chern. Soc. (Lond.): 341-360.

Ruzicka L. (1973). In the borderland between bioorganic chemistry and biochemistry, Annu. Rev. Biochem., 42: 1-20.

Su-Fang E., Zeti-Azura M., Roohaida O., Noor A. S., Ismanizan I. and Zamri Z. (2014). Functional Characterization of Sesquiterpene Synthase from Polygonum minus. Scientific World Journal. doi.org/10.1155/2014/840592

Sunjung P. (2006). Agrobacterium tumefaciens –mediated transformation of tobacco (Nicotiana tabacum L.) leaf disks: evaluation of the co-cultivation conditions to increase β -Glucuronidase gene activity. (Master’s dissertation). Retrieved from http://etd.lsu.edu/docs/available/etd-07052006-173930/unrestricted/Park_thesis.Pdf

Takano A. and Okada H. (2011). Phylogenetic relationships among subgenera, species, and varieties of Japanese Salvia L. (Lamiaceae), J. Plant Res., 124: 245–52.

Trapp S. and Croteau R. (2001). Defensive resin biosynthesis in conifers. Ann. Rev. Plant Physiol., Plant Mol. Biol., 52: 689-724.

Volke D. C., Rohwer J., Fischer R. and Jennewein S. (2019). Investigation of the methylerythritol 4- phosphate pathway for microbial terpenoid production through metabolic control analysis. Microb Cell Fact. 18, 1,192. doi: 10.1186/s12934-019-1235-5

Wallach O. (1887). Zur KentniB der Terpene uDd dec atherischen Oele,Liebig's Ann. Chern., 239: 1-54.

Wang Q., Jia, M., Huh J. H., Muchlinski A., Peters R. J. and Tholl D. (2016). Identification of a dolabellane type diterpene synthase and other root-expressed diterpene synthases in Arabidopsis. Front Plant Sci., 7: 1761. doi.org/10.3389/fpls.2016.01761

Wang Q., Quan S. and Xiao H. (2019). Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply. Bioresour. Bioprocess. 6, 6. doi.org/10.1186/ s40643-019-0242-z

Zhou H. C., Shamala L. F., Yi X. K., Yan Z., Wei S. (2020). Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions. Sci. Rep. 10: 933. doi.org/10.1038/s41598-020-57805-1

Downloads

Published

2022-12-11

Issue

Section

Articles